HEAT PUMP SAFETY

Your safety and the safety of others are very important.

We have provided many important safety messages in this manual and on your appliance. Always read and obey all safety messages.

This is the safety alert symbol.
This symbol alerts you to potential hazards that can kill or hurt you and others.
All safety messages will follow the safety alert symbol and either the word “DANGER” or “WARNING.” These words mean:

⚠️ DANGER
You can be killed or seriously injured if you don't immediately follow instructions.

⚠️ WARNING
You can be killed or seriously injured if you don't follow instructions.

All safety messages will tell you what the potential hazard is, tell you how to reduce the chance of injury, and tell you what can happen if the instructions are not followed.
INSTALLATION REQUIREMENTS

These instructions are intended as a general guide only and do not supersede any national or local codes in any way. The installation must comply with all state, and local codes as well as the National Electrical Code.

- The heat pump is designed and approved for outdoor use only.
- The heat pump must be installed with no duct work in the airstream. The outdoor fan is not designed to operate against any additional static pressure.

Tools and Parts

Assemble the required tools before starting installation. Read and follow the instructions provided with any tools listed here.

Tools Needed:
- Torch
- ¼ in. Nut driver

Parts Needed:
Check local codes and HVAC supplier. Check existing electrical supply, and read “Electrical Requirements,” “Location Requirements,” “System Requirements” and “Connect Refrigerant Lines.”

System Requirements

Heat pump system matches are derived from actual laboratory testing of matched systems. It is recommended that only matching equipment be used to ensure proper operation and efficient performance.

- The designed system matches are listed in the heat pump unit specification sheets and on the heat pump refrigerant charging instructions located on the back of the service access panel.
- Refrigerant charging instructions include a list of matching indoor equipment with the proper orifice size and amount of refrigerant charge required.
- This heat pump has been factory charged with a quantity of refrigerant (R22) sufficient for a matched indoor coil and a maximum 20 ft of refrigerant line.

Indoor System Orifice

- Check the indoor coil orifice to see whether it matches the required orifice for the indoor coil and heat pump combination being installed.
- Refer to the refrigerant charge label located on the inside of the heat pump access panel for the correct orifice size required.
- Replace the orifice with the correct size if this size is not already installed in the indoor coil. Instructions for replacing the orifice are provided with the indoor coil.

Location Requirements

- This heat pump is designed to be located outdoors with sufficient clearance for free entrance to the inlet and discharge air openings. The location must also allow for adequate service access. See “Minimum Clearances.”
- Where possible, select a location for the heat pump which is shaded from the direct rays of the sun most of the time. North or east locations are usually most desirable. Position the heat pump to avoid direct contact with water, snow or ice from a roof line overhead.
- The heat pump must be installed on a solid, level mounting pad that will not settle or shift. Isolate the pad from the building structure to avoid possible transmission of sound or vibration from the heat pump into the conditioned space.
- The heat pump foundation should be raised to a minimum of 3 in. above finish grade. In areas which have prolonged periods of temperatures below freezing, and/or snowfall, the heat pump should be elevated above the average snow line. If heat pump is to be installed on a flat roof, it should be on a platform or other support which will raise the inlet air opening 12 in. minimum above the surface of the flat roof.
- Care should be taken to ensure free drainage of condensate from defrost cycles. This will prevent ice accumulation. The heat pump should be located away from walkways to prevent possible icing from defrost condensate.
- Avoid placing the heat pump near areas such as sleeping quarters or study rooms. Normal operating sound levels may be objectionable if the heat pump is placed near certain rooms. A shift in sound type does occur during the defrost mode. The defrost mode generally lasts no longer than 10 minutes.

Minimum Clearances

1. Outdoor rated disconnect switch
2. NEC class 1 wiring
3. NEC class 2 wiring
4. House thermostat
5. Seal openings
Electrical Requirements

WARNING

Electric Shock Hazard
Electrically ground heat pump.
Connect ground wire to green pigtail lead.
Use copper wire for supply connection.
Correct wire gauge is shown in the chart below.
Failure to follow these instructions can result in death or electrical shock.

<table>
<thead>
<tr>
<th>Rating Plate Ampacity</th>
<th>AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 15</td>
<td>14</td>
</tr>
<tr>
<td>16 - 20</td>
<td>12</td>
</tr>
<tr>
<td>21 - 30</td>
<td>10</td>
</tr>
<tr>
<td>31 - 50</td>
<td>8</td>
</tr>
</tbody>
</table>

NOTE: All wiring must be suitable for outdoor use. Use copper conductors only.

- All field wiring must be done in accordance with National Electrical Code requirements, applicable requirements of UL, or local codes, where applicable.
- Electrical wiring, disconnect means and over current protection are to be supplied by the installer. Refer to the rating plate for the maximum over current protection, minimum circuit ampacity, and operating voltage. See wiring diagram.

INSTALLATION INSTRUCTIONS

Inspect Shipment

WARNING

Excessive Weight Hazard
Use two or more people to move and install condensing unit/heat pump.
Failure to do so can result in back or other injury.

This heat pump is shipped in one package, completely assembled and wired. The thermostat is shipped in a separate carton when ordered.

1. Check the heat pump rating plate to confirm specifications are as ordered.
2. Upon receipt of equipment, carefully inspect it for possible shipping damage. Take special care to examine the unit inside the carton if the carton is damaged.

If damage is found, it should be noted on the carrier's freight bill. Damage claims should be filed with the carrier immediately. Claims of shortages should be filed with the seller within 5 days.

NOTE: If any damages are discovered and reported to the carrier, do not install the unit because your claim may be denied.

Connect Refrigerant Lines

Refrigerant lines must be connected by a licensed, EPA certified refrigerant technician in accordance with established procedures.

IMPORTANT:
- Connecting refrigerant lines must be clean, dehydrated, refrigerant-grade copper lines. Heat pumps should be installed only with specified line sizes for approved system combinations with elevation differences up to 20 ft and total length of up to 50 ft. See the Suction Line Sizes and Liquid Line Sizes charts.
- Use care with the refrigerant lines during the installation process. Sharp bends or possible kinking in the lines will cause a reduction in performance.
- Do not remove the caps from the lines or system connection points until connections are ready to be completed.

1. Route the suction and liquid lines from the fittings on the indoor coil to the fittings on the heat pump. Run the lines in as direct a path as possible avoiding unnecessary turns and bends.
2. Ensure that the suction line is insulated over the entire exposed length and that both suction and liquid lines are not in direct contact with floors, walls, duct work, floor joists, or other piping.
3. Remove valve cores.
4. Wrap the service valves with a wet rag.
5. Connect the suction and liquid lines, using a brazing compound. Braze with an alloy of silver or copper and phosphorus with a melting point above 1,100°F.

NOTE: Do not use soft solder.

6. Make sure indoor coil has been put in place according to the Installation Instructions and is connected to the refrigerant lines.

7. Replace valve cores.

8. Pressurize the lines and indoor coil with dry nitrogen not to exceed 20 psi.

9. Leak test the refrigerant lines and indoor coil.

10. Evacuate the indoor coil and lines to a minimum of 500 microns to remove contamination and moisture, then disconnect the vacuum pump.

11. Open the suction and liquid service valves fully.

12. Insulate the suction line with refrigerant line insulation material of \(\frac{1}{4} \) in. or more wall thickness.

13. Pack insulating material around refrigerant lines where they penetrate the structure to protect the lines and to minimize vibration transmission.

Refrigerant Charge

Refrigerant lines must be connected by a licensed, EPA certified refrigerant technician in accordance with established procedures.

IMPORTANT:

- Refrigerant charge adjustment will be required for line set lengths greater than 20 ft. and for non system matched evaporator coils.
- The heat pump is factory charged with the proper refrigerant charge amount for a matching evaporator and 20 ft of refrigerant line. Refer to the heat pump rating plate for the exact amount of this factory charge.
- Adjustment of the refrigerant charge will be necessary based on the system combination and line length. To adjust the refrigerant size for increased line lengths and the following amount of refrigerant.

For line set lengths greater than 20 ft:

1. Add refrigerant by weighing in 0.60 oz. per foot of \(\frac{3}{8} \) in. O.D. liquid line.
2. Add refrigerant by weighing in 1.2 oz. per foot of \(\frac{1}{2} \) in. O.D. liquid line.

- If necessary, adjust the refrigerant charge for compatibility with the evaporator coil.

- In heat pump systems, horizontal suction lines should be slightly sloped toward the heat pump. Piping must avoid dips or low spots which can collect oil.

Suction Line Sizes

Installations of greater than 50 ft. are not recommended.

<table>
<thead>
<tr>
<th>BTU/HR</th>
<th>Line Set Size (in. OD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,000</td>
<td>5/8* 3/4 3/4</td>
</tr>
<tr>
<td>24,000</td>
<td>5/8* 3/4 3/4</td>
</tr>
<tr>
<td>30,000</td>
<td>3/4 3/4 3/4</td>
</tr>
<tr>
<td>36,000</td>
<td>3/4** 7/8 7/8</td>
</tr>
<tr>
<td>42,000</td>
<td>3/4** 7/8 7/8</td>
</tr>
<tr>
<td>48,000</td>
<td>7/8 7/8 7/8</td>
</tr>
<tr>
<td>60,000</td>
<td>7/8 7/8 7/8</td>
</tr>
</tbody>
</table>

NOTE: Tubing size reducers may be required to adapt line set size to suction and liquid lines.

* Requires a \(\frac{3}{8} \) in. to \(\frac{5}{8} \) in. reducer from unit to line set

** Requires a \(\frac{7}{8} \) in. to \(\frac{3}{4} \) in. reducer from unit to line set

Liquid Line Sizes

Installations of greater than 50 ft. are not recommended.

<table>
<thead>
<tr>
<th>BTU/HR</th>
<th>Line Set Size (in. OD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,000</td>
<td>3/8 3/8 3/8</td>
</tr>
<tr>
<td>24,000</td>
<td>3/8 3/8 3/8</td>
</tr>
<tr>
<td>30,000</td>
<td>3/8 3/8 3/8</td>
</tr>
<tr>
<td>36,000</td>
<td>3/8 3/8 3/8</td>
</tr>
<tr>
<td>42,000</td>
<td>3/8 3/8 3/8</td>
</tr>
<tr>
<td>48,000</td>
<td>3/8 3/8 3/8</td>
</tr>
<tr>
<td>60,000</td>
<td>3/8 3/8 3/8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line Set Length</th>
<th>Less than 25 ft</th>
<th>25 ft</th>
<th>Over 25 ft and up to 50 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refrigerant Charge

Refrigerant lines must be connected by a licensed, EPA certified refrigerant technician in accordance with established procedures.

IMPORTANT:

- Refrigerant charge adjustment will be required for line set lengths greater than 20 ft. and for non system matched evaporator coils.
- The heat pump is factory charged with the proper refrigerant charge amount for a matching evaporator and 20 ft of refrigerant line. Refer to the heat pump rating plate for the exact amount of this factory charge.
- Adjustment of the refrigerant charge will be necessary based on the system combination and line length. To adjust the refrigerant size for increased line lengths and the following amount of refrigerant.

For line set lengths greater than 20 ft:

1. Add refrigerant by weighing in 0.60 oz. per foot of \(\frac{3}{8} \) in. O.D. liquid line.
2. Add refrigerant by weighing in 1.2 oz. per foot of \(\frac{1}{2} \) in. O.D. liquid line.

- If necessary, adjust the refrigerant charge for compatibility with the evaporator coil.

- In heat pump systems, horizontal suction lines should be slightly sloped toward the heat pump. Piping must avoid dips or low spots which can collect oil.
Make Electrical Connections

IMPORTANT:
- Electrical wiring, disconnect means and over current protection are to be supplied by the installer. Refer to the rating plate for the maximum over current protection, minimum circuit ampacity, and operating voltage. See wiring diagram.
- Install an adequately sized branch circuit disconnect, per the NEC, within sight of and readily accessible from heat pump.
- The cable or conduit and fittings connected from the disconnect to the heat pump shall be rated for outdoor use.
- Check the heat pump rating plate to determine if the system is rated single phase or three phase and follow the appropriate instructions below.

Single Phase Electrical Connections
(Refer to “Wiring Diagram - Single Phase 208/230 Volt.”)

WARNING

Electrical Shock Hazard
Disconnect power before servicing.
Replace all parts and panels before operating.
Failure to do so can result in death or electrical shock.

1. Disconnect power.
2. Remove control box cover.
3. Connect the field supply wires L1 and L2 to contactor terminals L1 and L2.
4. Using a U.L. listed wiring nut, connect ground wire to green pigtail lead.

![Wiring Diagram - Single Phase 208/230 Volt.]

5. Connect low voltage circuit.

Typical Wiring Connection (low voltage circuit)

<table>
<thead>
<tr>
<th>Thermostat</th>
<th>Indoor Unit</th>
<th>Outdoor Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>Q</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>W</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>

24V Control Wiring (NEC Class 2)

1. Do not connect C (common) connection between indoor unit and thermostat except when required by the indoor thermostat. Refer to the thermostat installation instructions.
2. C (common) connection between indoor unit and outdoor unit required for proper operation.

6. Replace control box cover.
7. Reconnect power.
Three Phase Electrical Connections
(Refer to “Wiring Diagram - Three Phase 208/230 Volt”)

IMPORTANT: If three phase connections are reversed, the compressor will run backwards and go out on the overload protector. If this occurs, reverse any 2 of the field supply leads at the contactor.

1. Disconnect power.
2. Remove control box cover.
3. Connect the field supply wires L1, L2 and L3 to contactor terminals L1, L2 and L3.
4. Using a U.L. listed wiring nut, connect ground wire to green pigtail lead.
5. Connect low voltage circuit.

Typical Wiring Connection (low voltage circuit)

1. Field supply ground wire
2. Green pigtail lead
3. 208/230 Volt field supply wires

24V Control Wiring (NEC Class 2)

1. Do not connect C (common) connection between indoor unit and thermostat except when required by the indoor thermostat. Refer to the thermostat installation instructions.
2. C (common) connection between indoor unit and outdoor unit required for proper operation.

6. Replace control box cover.
7. Reconnect power.

Electrical Shock Hazard
Disconnect power before servicing.
Replace all parts and panels before operating.
Failure to do so can result in death or electrical shock.

WARNING
NOTE:
If any of the original wire is replaced, the same size and type wire must be used.
NOTE:
If any of the original wire is replaced, the same size and type wire must be used.

If any of the original wire is replaced, the same size and type wire must be used.

NOTE:
COPPER CONDUCTORS ONLY
USE CONDUCTORS SUITABLE FOR AT LEAST 75˚C
Complete Installation

1. Operate the heat pump for a period of at least 15 minutes to allow for pressures and temperatures to stabilize.

2. If heat pump does not appear to be functioning correctly, have heat pump checked by a person certified by the EPA to handle refrigerant.

Sequence of Operation

Cooling

Upon cooling demand, the thermostat closes circuit R to O and Y. Closing R to O and Y energizes the reversing valve for cooling operation and closes the heat pump contactor, starting the compressor and outdoor fan. The thermostat automatically closes R to G circuit, which also brings on the indoor fan at the same time. Upon satisfying cooling demand, the thermostat will open the above circuits and open the main contactor, stopping the compressor and outdoor fan. If the indoor unit is equipped with a delay timer, the blower will continue to operate for 60 – 90 seconds which improves system efficiency.

Heating

Upon heating demand, the thermostat closes circuit R to Y, which closes the heat pump contactor, starting the compressor and outdoor fan. The reversing valve is not energized in the heating mode. The thermostat again automatically brings on the indoor fan at the same time. Upon satisfying heating demand, the thermostat opens above circuits and stops heat pump operation.

Defrost Cycle

If the outdoor ambient conditions are such that frost forms on the outdoor coil, the defrost control monitors the need for and initiates and terminates defrost cycles as necessary to maintain system performance.

The defrost control is time/temperature initiated and temperature terminated with a maximum defrost time (time-out) of 10 minutes. The time between defrost cycles is preset at 60-minute intervals at the factory, but can be field adjusted between 30, 60, or 90 minutes. To adjust the time period between defrost cycles, see “Adjust Time Between Defrost Cycles.”

The defrost control will initiate a defrost cycle when the selected time period has elapsed and the defrost sensor sees a temperature below freezing. At the start of a defrost cycle, the defrost control will energize the reversing valve solenoid, shifting the reversing valve and de-energizing the outdoor fan. The defrost relay will also close, energizing temporary heat for increased comfort during defrost (if the indoor unit is so equipped). The heat pump will remain in defrost until the defrost sensor has determined that the frost has been removed from the coil or a 10-minute period has elapsed, whichever comes first.

ADJUSTING DEFROST
SYSTEM

Defrost Control Board

1. Quiet defrost plug
2. Defrost time setting plug
3. Defrost test pins
4. Defrost sensor terminals

Adjust Time Between Defrost Cycles

WARNING

Electrical Shock Hazard

Disconnect power before servicing.
Replace all parts and panels before operating.
Failure to do so can result in death or electrical shock.

1. Disconnect power.
2. Remove the control box cover.
3. Adjust the time period between defrost cycles by placing the defrost time plug in the proper position (see “Defrost Control Board”).
 - For 30 minute intervals between defrost cycles, move the Defrost Time Setting Plug to the pins corresponding to 30.
For 60 minute intervals between defrost cycles, move the Defrost Time Setting Plug to the pins corresponding to 60 (this setting is the factory preset setting).

For 90 minute intervals between defrost cycles, move the Defrost Time Setting Plug to the pins corresponding to 90.

4. Replace the control box cover.
5. Reconnect power.

Quiet Defrost (on some models)

On heat pumps equipped with a scroll type compressor, the defrost control has a quiet defrost feature that turns off the compressor and outdoor fan for 10 seconds when the reversing valve solenoid energizes to begin a defrost cycle. This results in a quieter defrost cycle.

1. Disconnect power.
2. Remove the control box cover.
3. Move the quiet defrost plug from the NORM to the DLY position.
4. Replace the control box cover.
5. Reconnect power.

Troubleshoot the Defrost System

WARNING

Electrical Shock Hazard
 Disconnect power before servicing.
 Replace all parts and panels before operating.
 Failure to do so can result in death or electrical shock.

The defrost control is equipped with a set of pins (labeled TEST on control circuit board) to aid in troubleshooting the defrost system. Connecting the test pins speeds up the defrost cycle time by a factor of 256.

1. Disconnect power.
2. Remove control box cover.
3. Connect the test pins on the defrost control using a test jumper wire.

 NOTE: If the outdoor temperature is above 32°F, connect the defrost sensor terminals using a test jumper wire. See the Defrost Control.

4. Replace control box cover.
5. Reconnect power.

6. Start system in heating operation.
7. Time the defrost test cycle as determined by the chart. After the corresponding defrost cycle time from the chart below has elapsed, the reversing valve should shift to defrost mode and the outdoor fan should stop. After 2 seconds of defrost operation, the reversing valve should shift back to heating operation and the outdoor fan should start.

NOTE: If this procedure is not observed, check the reversing valve solenoid for correct operation by measuring temperatures and pressures under heating and cooling modes. If the reversing valve solenoid operates correctly then replace the defrost control board. See “Sequence of Operation.”

<table>
<thead>
<tr>
<th>Defrost Control Setting</th>
<th>Defrost Test Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 - 30 minutes</td>
<td>7 seconds</td>
</tr>
<tr>
<td>T2 - 60 minutes</td>
<td>14 seconds</td>
</tr>
<tr>
<td>T3 - 90 minutes</td>
<td>21 seconds</td>
</tr>
</tbody>
</table>

8. If an adjustment is required, see “Adjust Time Between Defrost Cycles” section.
9. Disconnect power.
10. Remove control box cover.
11. Remove jumper from test pins and jumper from defrost sensor terminals, if used.
12. Replace control box cover.
13. Reconnect power.

SYSTEM MAINTENANCE

- Leaves and other large obstructions should be carefully removed from the heat pump surfaces without damaging the fin surface of the coil.
- Routinely clean or change the indoor air filter. Should the indoor coil become dirty, thus restricting airflow, call a qualified service person to carefully clean the coil surface.
- An annual inspection by a qualified person should be performed to ensure continued quality performance.

ASSISTANCE OR SERVICE

If you need further assistance, you can write to the below address with any questions or concerns:

Whirlpool® Home Cooling and Heating
7901 S.W. 6th Court
Plantation, Florida 33324

Please include a daytime phone number in your correspondence.

Accessories

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATXV477</td>
<td>Thermo Expansion Valve - WGH230</td>
</tr>
<tr>
<td>ATXV478</td>
<td>Thermo Expansion Valve - WGH248</td>
</tr>
<tr>
<td>ATXV479</td>
<td>Thermo Expansion Valve - WGH260</td>
</tr>
<tr>
<td>AFOSL443-1</td>
<td>Fossil Fuel Kit</td>
</tr>
<tr>
<td>ASTAAT444-1</td>
<td>Outdoor Thermostat for Fossil Fuel Kit</td>
</tr>
</tbody>
</table>
Limited Warranty

September 2002

This warranty gives you specific legal rights and you may have other rights which vary from state/province to state/province. This warranty applies to U.S. and Canada only.

Warrantor: Allied Air Enterprises Inc., 355 Millennium Dr., Orangeburg, SC 29115

Products are available under the following brand names: Whirlpool, Whirlpool Gold

IF SOMETHING GOES WRONG, CONTACT THE WHIRLPOOL HOME COOLING & HEATING DEALER FROM WHOM YOU PURCHASED YOUR EQUIPMENT. IN MOST CASES, YOUR DEALER WILL BE ABLE TO CORRECT THE PROBLEM, BUT IF HE/SHE IS NOT ABLE TO DO SO, YOU SHOULD CONTACT TRADEWINDS DISTRIBUTING DIRECTLY IN WRITING AT THE FOLLOWING ADDRESS:

Whirlpool® Home Cooling and Heating
7901 S.W. 6th Court
Plantation, Florida 33324

General Warranty

Subject to the limitations stated in this warranty, we warrant the covered equipment for residential use, when installed, operated and maintained according to the manufacturer’s instructions, to be free of defects in workmanship or materials for a period of 5 years (1 year for commercial use) from the time of initial installation. We will replace any defective component without cost or expense to you except for the costs of diagnosis, delivery and labor for removing, servicing and/or replacing the parts or unit.

WH1 series heat pumps carry a 5-year compressor warranty. WH2 and WGH series heat pumps carry a 10-year compressor warranty.

Warranty Begins

The warranty period begins when the installation is complete and the product is ready to operate. You must be able to verify this date whenever a warranty claim is made. Original bill of sale, installer’s invoice or other similar document will suffice. If the beginning date cannot be verified, we will consider warranty coverage to begin 6 months after the date the product was shipped from our factory.

Limitations on Implied Warranties

Implied warranties of merchantability or, to the extent applicable, fitness for a particular purpose are excluded to the extent legally permissible and are in any event limited to 5 years, or the shortest period allowed by law. Some states/provinces do not allow limitations or exclusions on how long an implied warranty of merchantability or fitness lasts, so the above limitations or exclusions may not apply to you.

Only Warranty

This written Limited Warranty is the only warranty made by the warrantor; this warranty is in lieu of and excludes all other warranties by the warrantor, express or implied. The warrantor does not authorize any person to provide on it’s behalf any other warranty or to assume for it any further obligation in connection with the warranted product.

What is NOT Covered by Any Warranty

1. Cabinets or cabinet pieces.
2. Normal maintenance items such as filters, fan belts, fuses or other consumable items.
3. Damage caused by misuse, failure to maintain properly, accidents or acts of God.
4. External wiring, piping, venting or attachment of accessory products not integral to our product, including without limitation, humidifier, air cleaner, vent damper, thermostat or other mechanical devices not manufactured by the warrantor.
5. Products that have been operated in a corrosive atmosphere or otherwise in contact with corrosive materials where a concentration of acids, halogenated hydrocarbons or other corrosive elements such as urine, salt, etc. causes deterioration to metal surfaces or integral components. NOTE: Operation in a corrosive atmosphere is considered misuse and voids this warranty.
6. Products that have NOT been installed, used and maintained in accordance with our published installation instructions, applicable local, state/provincial or national codes, and/or ACCA published standards.
7. Products that have NOT been installed by competent, qualified installers.
8. Products that have been moved from their original place of installation.

Warranty on Replacement Components

Any replacement product or component furnished by us will assume the remaining (unused) portion of the Limited Warranty.

Consequential Damages

The warrantor shall not be responsible for any accidental consequential damages caused by any defect in the product. Some state/provinces do not allow the exclusion or limitations of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This product must be installed, used and cared for in accordance with the instruction manual. You are responsible for required periodic maintenance or service, such as changing or cleaning of air filters and lubrication or cleaning of components. **Failure to properly install, operate or maintain your unit voids this warranty.**
Keep this book and your sales slip together for future reference. You must provide proof of purchase or installation date for in-warranty service.

Write down the following information about your Split System Heat Pump- Outdoor Section to better help you obtain assistance or service if you ever need it.

<table>
<thead>
<tr>
<th>Information</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dealer name</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Phone number</td>
<td></td>
</tr>
<tr>
<td>Model number</td>
<td></td>
</tr>
<tr>
<td>Serial number</td>
<td></td>
</tr>
<tr>
<td>Installation date</td>
<td></td>
</tr>
</tbody>
</table>